BANCO DE CIRCUITOS VOLUME 4 CIRCUITOS TRIAC SCR

BANCO DE CIRCUITOS Volume 4 100 CIRCUITOS DE POTÊNCIA

Instituto NCB

 $\underline{www.newtoncbraga.com.br} \\ \underline{contato@newtoncbraga.com.br}$

BANCO DE CIRCUITOS – Vol.4 - 100 CIRCUITOS DE POTÊNCIA **Autor:** Newton C. Braga - São Paulo - Brasil - 2012

Palavras-chave: Eletrônica - Engenharia Eletrônica Componentes - Reparação - Service - Circuitos - Esquemas

Copyright by INTITUTO NEWTON C BRAGA. 1ª edicão

Todos os direitos reservados. Proibida a reprodução total ou parcial, por qualquer meio ou processo, especialmente por sistemas gráficos, microfílmicos, fotográficos, reprográficos, fonográficos, videográficos, atualmente existentes ou que venham a ser inventados. Vedada a memorização e/ou a recuperação total ou parcial em qualquer parte da obra em qualquer programa juscibernético atualmente em uso ou que venha a ser desenvolvido ou implantado no futuro. Essas proibições aplicam-se também às características gráficas da obra e à sua editoração. A violação dos direitos autorais é punível como crime (art. 184 e parágrafos, do Código Penal, cf. Lei nº 6.895, de 17/12/80) com pena de prisão e multa, conjuntamente com busca e apreensão e indenização diversas (artigos 122, 123, 124, 126 da Lei nº 5.988, de 14/12/73, Lei dos Direitos Autorais).

Diretor responsável: Newton C. Braga

Diagramação e Coordenação: Renato Paiotti

Apresentação	10
Introdução	12
1. Dimmer Para Incandescente	13
2. Flasher Potente	14
3. Flasher de 12 V	15
4. Controle de Potência com SCR	16
5. Controle de Fase Para Cargas Indutivas com Triac	17
6. Controle de Fase de Onda Completa com SCR	18
7. Chave de Potência com SCR (meia onda)	19
8. Controle de Potência com Triac	20
9. Dimmer com Triac	21
10. Dimmer Automático Temporizado	22
11. Controle de Fase com Triac	23
12. Controle de Potência com Triac	25
13. Controle de Potência Trifásico	26
14. Controle de Motor Usando Tensão Residual	27
15. Controle de Potência com SCR	28
16. Dimmer Estabilizado Por Zener	29

17. Chave de Duas Potências com Triac	30
18. Dimmer com Triac (2)	31
19. Controle de Motor AC	32
20. Dimmer de Toque	33
21. Efeito de Luz Incandescente	34
22. Efeito de Chama ou Vela	35
23. Controle de Motor com Triac	36
24. Interruptor de Potência com Triac	37
25. Interruptor Noturno com Triac	38
26. Luz de Emergência	39
27. Interruptor Crepuscular	40
28. Interface Opto-Eletrônica Para Triac	41
29. Interface PC-Triac	42
30. Interface SCR	44
31. Controle de Triac com Reed-Switch	45
32. Controle de Triac com Reed-Relé	46
33. Controle de Triac Com Baixa Tensão	
34. Chave Triac Com Trava	
35. Chave de Potência com Triac	

36. Chave de Potência com Triac (2)	<u>50</u>
37. Chave de Potência com Isolador Óptico	
38. Chave de Potência com Isolador Óptico e Disparo AC	
39. Chave de Potência AC	53
40. Chave de Potência AC com Acoplador Óptico	54
41. Chave AC Isolada por Transformador	55
42. Seletor de Velocidade AC	56
43. Controle de Fase Para Motores	57
44. Chave com Retardo Usando Triac	58
45. Alarme de Baixo Consumo Usando SCR	59
46. Timer com Unijunção e SCR	60
47. Reed Relé Acionando Triac	61
48. Chave AC Acionada Por Baixa Tensão	62
49. Inversor com SCR	63
50. Inversor Para Fluorescente com SCR	64
51. Gerador de Alta Tensão	65
52. Controle de Temperatura	66
53. Controle de Temperatura tipo Zero Crossing	67
54. Eletrificador	68

55. Eletrificador de Cercas	69
56. Eletrificador de Cercas (2)	70
57. Chave de Alta Potência com SCR	
58. Chave de Potência Controlada por Luz	72
59. Chave de Potência Controlada por Luz (2)	73
60. Termostato de Alta Potência	74
61. Alarme com SCR	75
62. Alarme de Luz com SCR	76
63. Alarme com SCR (2)	77
64. Alarme com SCR com Retardo	78
65. Alarme com SCR com Retardo (2)	79
66. Alarme com SCR Sofisticado com Retardo	80
67. Alarme de Água ou Umidade	81
68. Alarme de Água ou Umidade Ultrassensível	82
69. Alarme de Luz	83
70. Alarme de Luz Sensível	84
71. Alarme de Passagem	85
72. Alarme de Passagem Sensível	86
73. Alarme de Passagem Sensível (2)	87

74. Foto-Disparo para SCR	<u>88</u>
75. Carregador Automático de Baterias	
76. Biestável com SCRs	90
77. Sinalizador Incandescente de Alta Potência	91
78. sensor de Toque com SCR	92
79. Flash Disparado por Som	93
80. Carregador Automático de Baterias (2)	94
81. Sequencial de 3 Canais	95
82. Carregador de Baterias de 12 V (3)	96
83. Simples Alarme Automotivo	97
84. Biestável com Relé e SCR	98
85. Chave de Prioridade com LDR e SCR	99
86. Sensor de Toque com SCR	100
87. Nervo Teste com SCR	101
88. Pulsador de Potência	102
89. Pulsador de Potência 555 e Triac (2)	103
90. Timer com Unijunção e SCR	104
91. Biestável CMOS e Triac	105
92. Chave AC Temporizada Unijunção	106

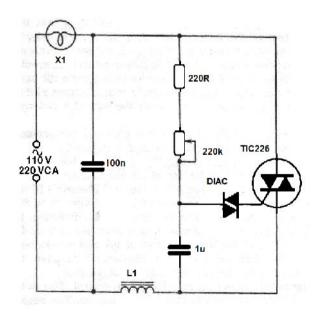
93. Estroboscópica de Xenônio	107
94. Flash Auxiliar de Xenônio	108
95. Foto SCR	109
96. Provador de SCRs	110
97. Provador de SCRs (2)	111
98. Teste de Semicondutores de Potência	112
99. Acendedor de Fogão com Sidac	113
100. Filtro Contra Interferências Via Rede	114
Informações Sobre Componentes	115
1. TIC106	115
2. TIC226	117
3. C106D1 - SCR Para 4 A	118
4. TIC236	119
COMO USAR CORRETAMENTE TIRISTORES	120
Quadrac	

Apresentação

Durante nossa longa carreira como escritor de artigos e livros técnicos, por diversas vezes abordamos o tema "coletânea de circuitos", incluindo também informações. Assim, anteriormente, abordando este tema, publicamos as séries "Circuitos Informações" (7 volumes) e "Circuitos e Soluções" (5 volumes) contendo centenas de circuitos úteis e informações técnicas de todos os tipos. As séries se esgotaram, o tempo passou, mas os leitores ainda nos cobram algo semelhante atualizado e que possa ser usado ainda em projetos de todos os tipos. De fato, circuitos básicos usando componentes discretos comuns, de transistores a circuitos integrados, são ainda amplamente usados como soluções simples para problemas imediatos, parte de projetos mais avançados e até com finalidade didática atendendo à solicitação de um professor que necessita de uma aplicação para uma teoria. Assim, voltamos agora com esta série, mas com uma estrutura diferenciada, novos projetos e nova abordagem. O diferencial na abordagem será dividir os diversos volumes da série por temas. Assim, no nosso primeiro volume tivemos circuitos de áudio, depois circuitos de fontes, no terceiro, circuitos osciladores, e neste quarto, circuitos de potência com SCRs e Triacs, e assim por diante. Em nosso estoque de circuitos, coletados de todas as fontes possíveis temos mais de 5000 deles, muitos dos quais podendo ser acessados de forma dispersa no site. A vantagem de se ter estes circuitos organizados em volumes, além do acesso em qualquer parte, está na fácil localização de um circuito. As informações, por outro lado, serão agregadas aos circuitos, com links internos, o que só é possível numa publicação digital. A maioria destes circuitos, colhidos em publicações que, em alguns casos, pode não ser muito atuais,

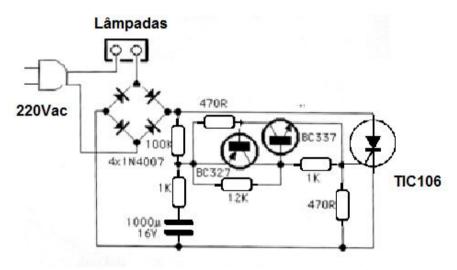
recebe um tratamento especial com comentários, sugestões e atualizações que viabilizam sua execução mesmo em nossos dias. Enfim, com esta série, damos aos leitores a oportunidade de ter em seus tablets, Iphones, Ipads, PCs, notebooks e outras mídias uma fonte de consulta de grande importância tanto para seu trabalho, como para seus estudos ou simples como hobby.

Newton C. Braga

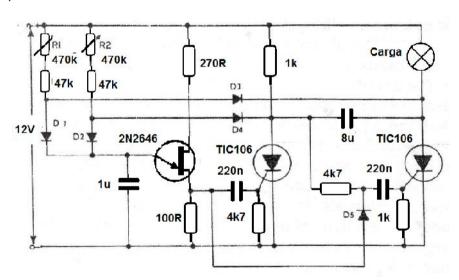

Introdução

Depois do sucesso do Banco de Circuitos no meu site e das coleções esgotadas de Circuitos e Informações e Circuitos e Soluções, levo aos meus leitores uma coletânea de circuitos selecionados de minha enorme coleção disponível. Durante minha vida toda colecionei praticamente todas as revistas técnicas de eletrônica estrangeiras, dos Estados Unidos, França, Espanha, Itália, Alemanha, Argentina e até mesmo do Japão, possuindo assim um enorme acervo técnico. Não posso reproduzir os artigos que descrevem os projetos que saem nessas revistas, por motivos ditados pela lei dos direitos autorais, mas a mesma lei permite que eu utilize uma figura do texto, com citação, comentando seu conteúdo para efeito de informação ou complementação de um conteúdo maior. É exatamente isto que faço na minha seção no site e também disponibilizo neste livro. Estou selecionando os principais circuitos destas publicações, verificando quais ainda podem ser montados em nossos dias, com a eventual indicação de componentes equivalentes, fazendo alterações que julgo necessárias e disponibilizando-os aos nossos leitores. Para o site já existem mais de 5000 circuitos, no momento que escrevo este livro, mas a quantidade aumenta dia a dia. Acesse o site, que ele poderá lhe ajudar a encontrar aquela configuração que você precisa para seu projeto. Os 100 circuitos selecionados para esta edição da série são apenas uma pequena amostra do que você vai encontrar no site. Para esta edição escolhemos 100 circuitos de potência usando SCRs e Triacs com componentes comuns e de fácil obtenção na maioria dos casos.

Newton C. Braga


1. Dimmer Para Incandescente

Este circuito controla o brilho de lâmpadas incandescentes até 400 W para os Triacs da série TIC226. O diac é comum e o circuito funciona na rede de 110 V. Para a rede de 220 V deve ser alterado o capacitor junto ao diac. O livro é de um manual de tiristores americano de 1974. O choque pode ser feito com 40 espiras de fio 22 ou 24 num pequeno bastão de ferrite. O Triac deve ser dotado de dissipador de calor. Podemos usar os tipos com sufixo B ou D para a rede de 110 V e na rede de 220 V devemos usar o tipo com sufixo D. O capacitor de filtro de 100 nF deve ser de poliéster com uma tensão de trabalho de pelo menos 400 V. Não use este circuito no controle de lâmpadas eletrônica ou equipamentos eletrônicos sensíveis.


2. Flasher Potente

Este circuito foi obtido numa revista inglesa do ano 2000. O circuito pode ser montado com facilidade, pois os componentes são comuns. O SCR pode ser o TIC106. A frequência das piscadas pode ser alterada com a troca dos componentes. O circuito só funciona como lâmpadas incandescentes. O TIC106 deve ser sufixo D para a rede de 220 V. O circuito também funciona na rede de 110 V. Para lâmpadas acima de 40 W, o SCR deve ser montado em radiador de calor. Não use outros tipos de lâmpadas e lembre-se que o circuito é ligado à rede podendo causar choques se suas partes vivas forem tocadas.

3. Flasher de 12 V

Este circuito é de um livro sobre tiristores de 1974. A edição americana traz diversos circuitos que ainda hoje podem ser montados, usando SCRs TIC106 em lugar dos originais, como esse. O circuito tem sua frequência controlada pelo capacitor de 1 uF que pode assumir diversos valores. Observe que ocapacitor de 8 uF é um capacitor eletrolítico não polarizado. Podem ser usados dois capacitores de 16 uF em série em oposição. Este circuito funciona com lâmpadas incandescentes de 12 V até 3 A. O SCR deve ser dotado de um pequeno dissipador de calor. Os diodos podem ser os 1N4002 ou 1N4004.

